Fault Tolerant Depth Control of the MARES AUV

نویسندگان

  • Bruno Ferreira
  • Aníbal Matos
  • Nuno Cruz
چکیده

Control theory has been applied to several domains where practical considerations are relevant. Robotics is a notable example of this. In most cases, mobile robotic systems are governed such that their behavior obeys to a defined motion. However, during their operations, it is conceivable that faults could occur. Indeed, this assumption has to be made in order to predict a possible malfunction and to take an appropriate action according to the fault, improving the robustness and the reliability of the system. This work tackles the problem of fault detection, identification and automatic reconfiguration of an autonomous underwater vehicle (AUV). Although our emphasis will be directed to an AUV, the methods and the tools that are employed in this chapter can be easily extended to other engineering problems beyond robotics. In this work, we will consider the MARES (Modular Autonomous Robot for Environment Sampling) (Fig. 1) Cruz & Matos (2008); Matos & Cruz (2009), a small-sized (1.5 meters long), torpedo shaped AUV weighting 32 kg, able to move at constant velocities up to 2.5 m/s. Its four thrusters provide four degrees of freedom (DOF), namely surge, heave, pitch and yaw. One of its main particularities is the capability to dive independently of the forward motion. The vertical through-hull thrusters provide heave and pitch controllability, while the horizontal ones ensure the surge and the yaw DOFs. The heave and pitch DOFs make the vertical plane control redundant when the vehicle is moving with surge velocities different from zero. In other words, the vehicle remains controllable if only one of these two DOFs is available. Such characteristic will be explored along this chapter in which the control of the nonlinear dynamics of the AUV Ferreira, Matos, Cruz & Pinto (2010); Fossen (1994) constitutes a challenging problem. By taking advantage of the distribution of the actuators on the vehicle, it is possible to decouple the horizontal and the vertical motion. A common approach in such systems is to consider reduced models in order to simplify the analysis and the derivation of the control law (see Ferreira, Matos, Cruz & Pinto (2010); Teixeira et al. (2010) or Fossen (1994), for example). In general, for topedo-shaped vehicles, coupling effects due to composed motions (e.g., simultaneous sway and heavemotions) are clearly smaller than the self effects of decomposedmotion (e.g., effect of the heavemotion on the heave dynamics) and can therefore be considered disturbances in the reduced model in which they are not included. Thus, a reduced model will be considered to deal with the vertical motion taking surge, heave and pitch rate as state components. In order to make the detection and identification of possible faults, we present a method based on process monitoring by estimating relevant state variables of the system. See Frank & Ding (1997) for an overview on several techniques andZhang & Jiang (2002) for an application to a particular linear system. Wu et al. (2000) have developed an algorithm based on the two-stage 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Order Fault Tolerant Controller for Auv

Here a innovative approach of Auto tuned fractional order control is proposed for fault tolerant control of Autonomous Underwater Vehicle (AUV). From fault detection and reconfiguration, fractional order controller is designed. Reconfiguration is designed using Eigen structure assignment technique. The proposed approach is tested on REMUS-100 AUV model. Variable step input is used as a referenc...

متن کامل

Sensor Fault Tolerant Control for AUVs Based on Replace Control

To improve the reliability of the motion control system for an autonomous underwater vehicle (AUV), sensor fault tolerant control based on replace control was talked about. This paper analyzed the decoupling controller and the sensor system firstly, and proposed a fault tolerant control strategy based on the ideas of replacing the fault sensor outputs by the sliding-mode observer outputs (also ...

متن کامل

Study of the Supervisory Control Applied to an Auv

This paper presents and discusses a fault-tolerant control model on a autonomous underwater vehicle (AUV) with six thrusters, using five degrees of freedom. Simulations were made when there are no faults and when faults occur in two of the horizontal thrusters. The kinematics and dynamics of the vehicle and the thrusters are explained and it is given an introduction of automatons and how they w...

متن کامل

Design of an Active Approach for Detection, Estimation and Short-Circuit Stator Fault Tolerant Control in Induction Motors

Three phase induction motors have many applications in industries. Consequently, detecting and estimating the fault and compensate it in a way that the faulty induction motor satisfies the predefined goals are important issues. One of the most common faults in induction motors is the short circuit of the stator winding. In this paper, an active fault-tolerant control system is designed and pres...

متن کامل

A Microprocessor-Based Hybrid Duplex Fault-Tolerant System

Reliability is one of the fundamental considerations in the design of industrial control equipment. The microprocessor-based Hybrid Duplex fault-tolerant System (HDS) proposed in this paper has high reliability to meet this demand although its hardware structure is simple. The hardware configuration of HDS and the fault tolerance of this system are described. The switching control strategies in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012